

MGF1106 Liberal Arts Mathematics I **Sets Summary**

Set:	A well-defined collection of objects Sets are indicated by { }
Element:	An individual object of a set Ex: $A = \{1, 2, 3, 4\}; 1 \in A, not \{1\} \in A$
Describing sets [3	ways]:1. verbal description (a sentence description of the set)2. roster form (listing each individual element)3. set-builder notation (using a variable to stand for any element & a brief verbal description)ExamplesSet G is the set of US states that border the Gulf of Mexico roster: $G = \{FL, AL, MS, LA, TX\}$ set-builder: $G = \{x x \text{ is a state bordering the Gulf of Mexico}\}$
Empty (Null) set:	a set with no elements; symbolized by $\emptyset or \{ \}$
Equal sets:	2 sets are equal if they have the exact same elements (not necessarily in the same order)
Equivalent sets:	2 sets are equivalent if they have the same number of elements
Subset:	A is a subset of B ($A \subseteq B$) if every element of A is also an element of B
Proper subset:	<i>A</i> is a proper subset of <i>B</i> ($A \subset B$) if every element of <i>A</i> is also an element of <i>B</i> & $A \neq B$ • the null set is a subset of every other set
Universal set:	the set of all elements under consideration (symbolized by U)
Number of subset	s: a set of <i>n</i> elements has 2 <i>n</i> subsets
Intersection:	of 2 sets $A \& B$ $(A \cap B)$ is the set of all elements common to $A \& B$ $A A \cap B = \{x x \in A \& x \in B\}$ (i.e. only what they have in common)
Union:	of 2 sets <i>A</i> & <i>B</i> $(A \cup B)$ is the set of elements either in <i>A</i> , <i>B</i> , or both $A \cup B = \{x x \in A \text{ or } x \in B\}$
Complement:	of set <i>A</i> is everything left in the Universal set after you remove the elements of set <i>A</i> (<i>A'</i>) $U = \{1, 2, 3, \dots, 10\}$ Ex: $A = \{2, 4, 6, 8\}$ $A' = \{1, 3, 5, 7, 9, 10\}$
Difference:	of 2 sets A & B $(A - B)$ is the set of all elements that are in A and not in B

 $A - B = \{x | x \in A \& x \notin B\}$ (what is left in *A* after you take away the common elements with *B*)