Essenital Concepts for sketching graphs

For all functions: x-intercept occurs where f(x) = 0 (i.e. y = 0) y-intercept occurs at f(0) (i.e. x = 0)

Linear Functions

$$f(x) = ax + k$$

or $y = mx + b$

the coefficient on the x term is always the slope the constant term is always the y-intercept

Quadratic Functions

Parabolas

$$f(x) = a(x - h)^2 + k$$

or
$$f(x) = ax^2 + bx + c$$

a > 0 parabola faces up a < 0 parabola faces down vertex located at (h, k) k is extreme (min or max) x = h is axis of symmetry

x intercepts at $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Cubic Functions

$$f(x) = a(x - h)^3 + k$$

change in curvature at (h, k)symmetry around x = h & y = k

Square Root Functions

$$f(x) = a\sqrt{x-h} + k$$
 Endpoint at (h, k)

Domain: $x \ge h$

Range: $y \ge k$ if a > 0

 $y \le k \text{ if } a \le 0$

Other typical radical functions:

Half a Circle

Half a Hyperbola

$$f(x) = \sqrt{r^2 - x^2}$$

$$f(x) = \sqrt{x^2 - r^2}$$

Rational functions

$$f(x) = \frac{a}{x - h} + k$$

$$f(x) = \frac{1}{x}$$

Symmetry around x = h & y = kVertical Asymptote: x = hHorizontal Asymptote: y = kDomain: $x \neq h$

b) Quadratic
$$f(x) = \frac{a}{(x-h)^2} + k$$

$$f(x) = \frac{1}{x^2}$$

Asymptotes & Domain as above Symmetry around y = k

Range:
$$\begin{cases} y > k, a > 0 \\ y < k, a < 0 \end{cases}$$

origin

symmetry

Absolute value functions

$$f(x) = a|x-h| + k$$

Similar to parabolas Vertex at (h, k)In general, the graph of y = |f(x)| will be the same as y = f(x) with regions below the x-axis rotated up

$$f(x) = |x|$$

